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INTRODUCTION 

As SHOWN in several recent papers [l-3] the Rayleigh- 
Schmidt approach is quite convenient when determining 
approximate analytical solutions to many important solid 
mechanics problems. The methodology has recently been 
applied in the case of heat conduction problems [4, 51 and it 
is extended herewith to the important practical situation 
of orthotropic regions which appears quite frequently in 
biomechanics, nuclear engineering, etc. 

The title problem is solved by conformally transforming 
the given region in the z-plane onto an annulus in the r- 
plane. The transformed functional is approximately satisfied 
using a two-term solution and employing the Rayleigh- 
Schmidt criterion. 

APPROXIMATE SOLUTION 

The problem under study is governed by the orthotropic 
Poisson equation : 

subjected to the boundary condition 

T[&(x,y) = 0] = 0; i= 1,2 ( b) 

where L,(x, y) = 0 is the functional relation which defines 
each boundary of the doubly connected domain. 

In order to apply the Rayleigh-Schmidt formulation one 
expresses (la) in terms of the equivalent functional 

J[Tl= jb [“;(gJ+: ($qT]dxdy (2) 

subjected to the condition (lb). 
Let 

z = xfyi =f(<); 5 = re”’ (3) 

be the mapping function which conformally transforms the 
given domain onto an annulus in the t-plane. 

Substituting (3) in (2) results in the transformed functional 

1 
-- 

2 ss 
gTlf’(5)l*rdr de. (4) 

Taking now a summation of coordinate functions that 
satisfy the boundary conditions 
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NOMENCLATURE 

a, apothem of a regular polygon 
A,, A2 arbitrary constant, see equation (8) 
J functional 
k,, k,, heat conduction coefficients of the 

orthotropic medium in the x and y direction, 
respectively 

9 heat generation term 
* radial variable (transformed plane) 
T temperature 

.7 complex variable (real plane). 

Greek symbols 
my, aI coefficients of the coordinate function, see 

equation (8) 
5 complex variable (transformed plane) 
Y optimization parameter 
13 angular coordinate (transformed plane). 

where in accordance with the Rayleigl-Schmidt technique y 
is an optimization exponential parameter, one substitutes (5) 
in (4) and requires that 

aJ dJ -_=-_= 
aAi ay 0 (i=1,2 >..., N). 

Once the A,s and the y parameter are obtained one pos- 
sesses an approximate expression for the temperature dis- 
tribution. 

NUMERICAL RESULTS 

In the case of regions of regular polygonal shape with a 
small concentric hole of radius &,, expression (3) is given by 
161 

z = aaA,~af$ (7) 

where a: apothem of the polygon, S: degree of polygon, 
r0 = R,/a,A, and a,+,,: coefficients of the mapping function 
161. 

For ]<] = 1, equation (7) maps the outer boundary of the 
doubly connected region and for 151 = r,, one obtains the 
inner, circular boundary (as shown in ref. [6] the approxi- 
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mation obtained is quite good from an engineering viewpoint 
as long as R,/a, << 1, say R,,/ap < 0.40). 

Expression (5) will be taken in the form 

T. = (af+a,r-l)(A, +A,cos28) (8) 

where in order to satisfy the transformed boundary con- 
ditions i”,],= ,.,0 = 0 one must have : 

ro- 1 l-r\ 
a?=-; 

ro-rb 
a, =--- 

ro-r; 

Substituting (7) and (8) in equation (4) and requiring that 

dJ dJ aJ o 
-z-z-= 

dA, aA, ay 
one obtains an algebraic, nonlinear system of equations in 
A,, A, and y. For the present case a simple trial-and-error 
procedure provided sufficient accuracy for the values of the 
unknowns. 

Numerical results have been obtained for square and hex- 
agonal domains for R&, = 0.10 and 0.20 [the first four 
terms of equation (7) have been employed in all calculations]. 
Values of the dimensionless temperature parameter TkJqg 
are depicted in Figs. 1 and 2. The analytical results are in 
reasonably good agreement with the values obtained by 
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FIG. 1. Dimensionless temperature distribution Tk,/qai (y = 0) in the case of a square region with a 
circular perforation (R,/a, = 0.10,0.20 and k,./k, = 1.20. 1.50). 
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FIG. 2. Dimensionless temperature distribution Tk,/qaz 0, = 0) in the case of a hexagonal region with a 
circular perforation (&/a, = 0.10,0.20 and k,/k, = 1.20, 1.50). 

means of a finite-element code (this code provides results 
which differ in less than 1% from exact, analytical solutions). 

It is observed that the accuracy of the approximate ana- 
lytical method improves considerably as the parameter k,/k, 
approaches unity (isotropic case) and also as the order of the 
polygon increases. 

The agreement between the analytical and the numerical 
results is analogous for other values of the 0 coordinate. 
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